[{"attributes":{"color":"var(--weui-FG-2)"},"insert":"失效分析 赵工"},{"insert":" "},{"attributes":{"color":"var(--weui-LINK)"},"insert":"半导体工程师"},{"insert":" "},{"attributes":{"color":"var(--weui-FG-2)"},"insert":"2023-08-23 08:35"},{"insert":" "},{"attributes":{"color":"var(--weui-FG-2)"},"insert":"发表于北京"},{"insert":"\n始于19世纪初期半导体材料的研究至今已经由第一代半导体材料发展到了第四代半导体材料,其中较为瞩目的莫过于第一代半导体材料si和第三代半导体材料sic了。大家是不是都有一样的好奇:si与sic除了应用方面的区别,它们两者本身有什么不同呢?下面我们来深度讲讲。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"先来看看Si和SiC材料的差别。"},{"attributes":{"align":"justify"},"insert":"\n\n"},{"insert":{"image":"https://files.eteforum.com/202308/2df0d09c363432c6.png"}},{"attributes":{"align":"center"},"insert":"\n"},{"insert":"其中最显著的区别,莫过于SiC的临界电场强度是Si的10倍。这意味着,要达到同样的击穿电压,SiC器件所需要的漂移区厚度,要大大小于硅器件,从而SiC器件的漂移区电阻也会减小。这样的特性,自然也造就了Si MOSFET和SiC MOSFET的不同结构。"},{"attributes":{"align":"center"},"insert":"\n"},{"insert":{"image":"https://files.eteforum.com/202308/f532730f2b91d648.png"}},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"传统的Si MOSFET是平面型器件"},{"attributes":{"align":"justify"},"insert":"\n\n"},{"insert":{"image":"https://files.eteforum.com/202308/4d086259b469665a.jpg"}},{"attributes":{"align":"justify"},"insert":"\n\n"},{"insert":"这种器件,如果要达到比较高的耐压,通常需要增加漂移区的宽度同时降低掺杂的浓度,这样会导致导通电阻大幅增加。为了解决耐压和导通电阻的折中问题,英飞凌CoolMOS系列采用了super junction MOSFET(超结MOSFET)的结构,"},{"attributes":{"align":"justify"},"insert":"\n\n"},{"insert":{"image":"https://files.eteforum.com/202308/8298cafda21d5ab7.png"}},{"attributes":{"align":"justify"},"insert":"\n\n"},{"insert":"Super junction MOSFET的特点n-漂移区存在极性相反的N条和P条间隔堆积,这意味着电场不仅存在于垂直方向,也存在于水平方向。它允许使用掺杂率较高的n-漂移层,因此在维持同样的耐压情况下,Super junction MOSFET能够比平面型的MOSFET大大降低器件的导通电阻。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"尽管如此,由于材料的桎梏,Super junction MOSFET仍在导通电阻和额定电压方面落后于 IGBT 和 SiC-MOSFET。高压器件目前还是以Si IGBT和SiC MOSFET为主。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"SiC MOSFET, 目前主流结构有两种:平面型和沟槽型。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"目前市面上大多数厂商都采用平面型结构,剖面结构如下所示,可以清楚地看到电流路径上的电阻分布"},{"attributes":{"align":"justify"},"insert":"\n\n"},{"insert":{"image":"https://files.eteforum.com/202308/ee3d2aa6c859c7bf.jpg"}},{"attributes":{"align":"justify"},"insert":"\n\n"},{"insert":"功率MOSFET的导通电阻,由几部分构成:源极金属接触电阻、沟道电阻、JFET电阻、漂移区电阻、漏极金属接触电阻。设计人员总是要千方百计地降低导通电阻,进而降低器件损耗。对于高压硅基功率器件来说,为了维持比较高的击穿电压,一般需要使用较低掺杂率以及比较宽的漂移区,因此漂移区电阻在总电阻中占比较大。碳化硅材料临界电场强度是硅的10倍,因此碳化硅器件的漂移区厚度可以大大降低。对于1200V及以下的器件来说,沟道电阻的成为总电阻中占比最大的部分。因此,减少沟道电阻是优化总电阻的关键所在。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"再来看沟道电阻的公式。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":{"image":"https://files.eteforum.com/202308/d892b61737a2b848.jpg"}},{"attributes":{"align":"justify"},"insert":"\n\n\n"},{"insert":"式中"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"italic":true},"insert":"L"},{"insert":"channel:沟道长度,"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"italic":true},"insert":"W"},{"insert":"channel:沟道宽度,"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"COX:栅氧电容,"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"italic":true},"insert":"μ"},{"insert":"n,channel:沟道电子迁移率"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"从上式可以看出,沟道电阻和沟道电子迁移率("},{"attributes":{"italic":true},"insert":"μ"},{"insert":"n,channel)成反比。平面型器件的沟道平行于硅片表面,因此硅片表面的SiO2界面质量对于沟道电子迁移率有直接的影响。碳化硅材料水平表面上形成的SiC-SiO2界面,缺陷密度要比Si-SiO2高得多,这些缺陷在电子流过会捕获电子,电子迁移率下降,从而沟道电阻率上升。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"如何解决这个问题呢?碳化硅是各向异性的晶体,不同的晶面,其态密度也是不同的。英飞凌就找到了一个晶面,这个晶面接近垂直于表面,与垂直方向有4°的夹角,在这个晶面上生长SiO2,得到的缺陷密度是最低的。于是,英飞凌沟槽型的CoolSiC™ MOSFET也就诞生了。需要强调一下,不是所有的沟槽型MOSFET都是CoolSiC™, CoolSiC™是英飞凌碳化硅产品的商标。CoolSiC™ MOSFET具有下图所示非对称结构。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"transparent","background":"transparent"},"insert":"duct/power/mosfet/silicon-carbide/?utm_source=zhihu&utm_medium=social&utm_campaign=gc-cn-ipc"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":{"image":"https://files.eteforum.com/202308/9050c22f2852dd80.jpg"}},{"attributes":{"align":"justify"},"insert":"\n\n\n"},{"insert":"CoolSiC™ MOSFET使用沟槽有什么好处?"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"首先,垂直晶面缺陷密度低,因而沟道电子迁移率高。所以,我们可以使用相对比较厚的栅极氧化层,同样实现很低的导通电阻。因为氧化层的厚度比较厚,不论开通还是关断状态下,它承受的场强都比较低,所以器件可靠性和寿命都更高。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"而且,CoolSiC™ MOSFET阈值电压约为4.5V,在市面上属于比较高的值。这样做的好处是在桥式应用,不容易发生寄生导通。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"另外,CoolSiC™ MOSFET是非对称的结构,沟槽一侧设置了深P阱,包裹了一侧的沟槽倒角。在器件承受反压时,深P阱与N-漂移区之间形成的耗尽区扩展,耗尽区可以包裹住另一侧的倒角,从而减轻场强集中的现象。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"深P阱的另一个功能,是作为体二极管的阳极。通常的MOSFET体二极管阳极都是由P基区充当,深P阱的注入浓度和深度都高于P基区,可以使体二极管导通压降更低,抗浪涌能力更强。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"因此, 我们可以看出,SiC MOSFET使用沟槽栅能大大提升其参数、可靠性及寿命。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#0052ff","bold":true},"insert":"Si\\GaN\\SiC-MOSFET以及Si-IGBT对应的工作环境"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"Si-MOSFET 、Si-IGBT 、GaN-MOSFET、SiC-MOSFET的电压、频率、功率之间的比较如下图所示:"},{"attributes":{"align":"justify"},"insert":"\n\n"},{"insert":{"image":"https://files.eteforum.com/202308/47049f9d86451273.jpg"}},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"\n来源:英飞凌,罗姆半导体"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"GaN 、SiC很有可能在高压高频方面完全取代硅基"},{"attributes":{"align":"justify","header":3},"insert":"\n"},{"insert":"SiC MOSFET 主打高压领域;GaN MOSFET 主打高频领域。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"根据功率、频率2个维度我们梳理主流功率器件物理特性及适用场合:"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"Si-IGBT虽然在高压领域具有优势,但是并不能胜任高频领域需求;"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"Si-MOSFET可以胜任高频领域,但是对于电压有一定的限制;"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"SiC与MOSFET相比完美地解决了硅基中高压与高频很难同时实现这一难题,基于与高压中频兼容, SiC-MOSFET并以其高效率小体积等特点成为电动汽车,充电桩和光伏逆变器(不考虑成本的话)的最优方案;"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"GaN-MOSFET由于具有超高频率性能,在5G射频领域前景广阔,目前以5G基站PA为主预计将来会扩宽至终端设备射频领域(如手机).另外GaN-MOsFET还在1000V内的快充,电动汽车等低电压和中压领域具有很大的潜在应用价值。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"l来源:半导体设备资讯站"},{"attributes":{"align":"justify"},"insert":"\n\n"},{"attributes":{"color":"var(--weui-FG-0)"},"insert":"半导体工程师"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"半导体经验分享,半导体成果交流,半导体信息发布。半导体行业动态,半导体从业者职业规划,芯片工程师成长历程。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"173篇原创内容"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"公众号"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"\n"}]
-
发表于 2023-08-23 08:45
- 阅读 ( 2451 )