声明:本文内容及配图由作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人, 不代表平台立场。文章及其配图仅供工程师学习 之用,如有内容图片侵权或者其他问题的,请联 系我们及时删除。(联系我们,邮箱:app@ chrent.com )
[{"attributes":{"color":"#222222","bold":true},"insert":"碳化硅(SiC)功率器件"},{"attributes":{"align":"right"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"在多年研究和设计之后,碳化硅(SiC)功率器件正迅速被各种功率电子应用所采用。从硅转向SiC,正从底层推动着新节能设计的发展。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"与硅IGBTs和MOSFETs相比,SiC效率更高,开关速度更快,同时改善了热性能,进而提高了功率密度,降低了系统成本。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"SiC正在被应用到功率更高、电压更高的设计中,比如电动汽车(EV)的马达驱动器、电动汽车快速充电桩、车载和非车载充电器、风能和太阳能逆变器和工控电源。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":" "},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222","bold":true},"insert":"面临的挑战"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"功率系统设计人员在转向SiC时,会面临一些问题的挑战:"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"测试设备能否准确地测量SiC系统的快速开关动态?"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"怎样才能准确地优化门驱动性能和空转时间?"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"共模瞬态信号是否影响测量准确度?"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"我看到的振铃是真的吗?还是探头响应结果?"},{"attributes":{"align":"justify"},"insert":"\n\n"},{"attributes":{"color":"#222222"},"insert":"对工程师来说,解决这些挑战非常难。还有一点,工程师需要准确地查看所有这些信号,才能及时做出正确的设计决策。提高设计裕量和过度设计,只会推动成本上升,让性能下降。使用适当的测量设备才是解决问题的关键。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"通过配套使用"},{"attributes":{"color":"#1cb5d8","bold":true},"insert":"泰克IsoVu™探头、4 系、5 系或6 系MSO 示波器及仪器上提供的自动测量功能"},{"attributes":{"color":"#222222"},"insert":",设计人员可以解决SiC 电路级性能验证问题。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"为提供所需的查看能力,测试设备在信号到达示波器之前,必须在电气上隔离测量通道。基于SiC的功率器件可以在几纳秒内开关,所以示波器和探头至少要拥有200 MHz带宽,才能捕获瞬态信号的快速上升沿和下降沿。例如,如果使用30 MHz Rogowski电流传感器,与400 MHz流查看电阻器相比,开关损耗测量会下降30%,因为30 MHz探头不能捕获开关波形的完整行为。高带宽低噪声信号为这些重要测量提供了要求的准确度。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222","bold":true},"insert":"|重点介绍|"},{"attributes":{"align":"center"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"本文重点介绍CAB011Ml2FM3高性能半桥模块。这个模块拥有Wolfspeed® C3M® 碳化硅(SiC)MOSFETs,是灵活的Wolfspeed WolfPACK 功率模块家族的旗下产品,图1是其中一个产品。这些模块消除了传统底板,改善了热性能。此外,引脚网格设计实现了扩充能力和灵活性,许多模块选项放在同一个标准底座中,可以开发替代转换器配置和拓扑,并使热量管理系统和电气设计变化达到最小。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222","bold":true},"insert":"确保SIC验证测量准确度"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"时域测量和开关损耗计算的准确度,受到用来采集测量数据的探头的准确度、带宽和时延的影响。下面从多个方面对比了常用的仪器探头。尽管这一讨论的重点是示波器探头之间的差异,但具体实现方式(如布局、寄生信号和耦合)也在测量准确度中发挥着关键作用。需要测量下面三个重要参数,才能正确验证采用SiC技术的功率模块。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#ffca00","bold":true},"insert":"■ "},{"attributes":{"color":"#222222","bold":true},"insert":" 栅极电压"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#ffca00","bold":true},"insert":"■"},{"attributes":{"color":"#222222","bold":true},"insert":" 漏极电压"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#ffca00","bold":true},"insert":"■"},{"attributes":{"color":"#222222","bold":true},"insert":" 电流"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222","bold":true},"insert":"栅极电压测量"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"测量SiC功率器件的栅极电压极具挑战性,因为它是一种低压信号(~20 Vpp),参考的节点相对于示波器接地可能会有高DC 偏置和高dv/dt。此外,最大的dv/dt发生在开关事件过程中,这是测量栅极信号时最关心的时间。即使是器件源极连接到接地的拓扑中,电路接地和示波器接地之间的寄生阻抗仍会由于快速瞬态信号而导致错误读数。这要求测量设备从接地反耦,要有非常大的共模抑制比。这种栅极电压测量在传统上采用标准差分探头(图2),而最新的光隔离探头,如IsoVu 探测系统(图3),则可以大大提高这种测量的准确度。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":" "},{"insert":{"image":"https://community-1252773949.cos.ap-guangzhou.myqcloud.com/article/2033/d4f0ed818f944400.png"}},{"attributes":{"align":"center"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"图2. 差分电压探头实例:泰克差分探头THDP0200探头及附件。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":" "},{"insert":{"image":"https://community-1252773949.cos.ap-guangzhou.myqcloud.com/article/2033/bd3cd812c4963801.png"}},{"attributes":{"align":"center"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"图3. 泰克lsoVu TIVP1光隔离探头"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"(TIVPMX10X, ±50 V传感器尖端)"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"图4比较了标准差分探头与光隔离探头进行的高侧栅极电压测量。不管是关闭还是打开,在器件栅极经过阈值区域后,栅极上都可以看到高频振铃。由于栅极和功率环路之间的耦合,预计会出现部分振铃。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"但是,在差分探头中,振铃的幅度明显要高于光隔离探头测得的值。这可能是由于参考电压变化在探头内部引起了共模电流及标准差分探头的假信号。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":" "},{"insert":{"image":"https://community-1252773949.cos.ap-guangzhou.myqcloud.com/article/2033/fa3f8a9cd04a5110.png"}},{"attributes":{"align":"center"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"图4. 差分探头( 蓝色轨迹) 与IsoVu 光隔离探头( 黄色轨迹) 对比。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"虽然图4中差分探头测得的波形似乎通过了器件的最大栅极电压,但光隔离探头的测量准确度要更高,明确显示器件位于规范范围内。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"使用标准差分探头进行栅极电压测量的应用工程师要注意,因为其可能区分不了这里显示的探头和测量系统假信号与器件额定值实际违规。这种测量假信号可能会导致设计人员提高栅极电阻,降慢开关瞬态信号,减少振铃。但是,这不一定会提高SiC 器件的损耗。为此,使用的测量系统一定要能准确地反映器件的实际动态,以正确设计系统,优化性能。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222","bold":true},"insert":"漏极电压测量"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"在功率电子系统中,差分探头和参考地电平探头是两种常用的电压测量方法。差分探头是一种流行的选择,因为它可以毫无问题地添加到电路的任意节点中。而参考地电平探头要注意实现方式,因为其屏蔽引脚连接到示波器的接地上。参考地电平测量实现不正确,一般会导致探头参考上出现小的接地电流,明显降低测量的准确度。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"这种效应在SiC设计中会更明显,因为高dv/dt会给示波器探头参考地电平引入寄生电流,导致测量误差。在更严重的情况下( 参考地电平屏蔽层连接到功率信号时),大电流会流过接地,损坏探头或示波器。在最坏的情况下,从仪器到接地的连接失败会导致示波器的外部金属壳浮动到总线电压,给操作人员的人身安全带来严重威胁。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":" "},{"insert":{"image":"https://community-1252773949.cos.ap-guangzhou.myqcloud.com/article/2033/d2d304e117fd2e51.png"}},{"attributes":{"align":"center"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"图5. 泰克TPP0850 电压探头:单端,参考地电平探头,支持50x衰减(高达100VRMS)及800 MHz 带宽。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"在使用参考地电平CVR时,接地问题变得更加关键。如图6所示,在结合使用参考地电平探头与CVR时,有可能通过示波器屏蔽路径绕过CVR。这会导致整个器件电流流过示波器,可能会损坏电压探头或示波器,也会带来重大的人身安全隐患。一般来说,推荐使用差分探头进行器件漏极到源极测量。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":" "},{"insert":{"image":"https://community-1252773949.cos.ap-guangzhou.myqcloud.com/article/2033/978ef3573e290b18.png"}},{"attributes":{"align":"center"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"图6. 在两只参考地电平的探头连接到不同电压的参考平面时,器件电流会旁路CVR,流经地线和示波器。这会导致测量错误,并可能会导致设备损坏。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222","bold":true},"insert":"电流测量"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"在功率电子系统中,电流查看电阻器(CVR)和Rogowski 线圈(图7a和b)是两种常用的电流测量方法。Rogowski线圈是一种流行的选择,因为它可以简便地添加到电路中,是一种非侵入式测量,但这类探头通常会有明显的带宽限制,不适合用于SiC。另一方面,CVRs 拥有极高的带宽,可以进行准确的电流测量。遗憾的是,串联晶体管时需要添加额外的器件要求谨慎规划PCB 布线,因为添加CVR 一般会提高电路中的寄生电感。"},{"attributes":{"align":"justify"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":{"image":"https://community-1252773949.cos.ap-guangzhou.myqcloud.com/article/2033/69b8f3db7dbd6dd4.png"}},{"attributes":{"color":"#222222"},"insert":" "},{"attributes":{"align":"center"},"insert":"\n"},{"attributes":{"color":"#222222"},"insert":"图7. 探头实例:(a) 电流查看电阻器(T&M Research SSDN-005,400 MHz)。图片由Wolfspeed 提供,获准重新印刷。(b)Rogowski电流探头(TRCP0600电流波形变送器,30 MHz)。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"——转自泰克科技"},{"attributes":{"align":"right"},"insert":"\n"},{"insert":"\n"}]
-
发表于 2022-11-24 11:30
- 阅读 ( 961 )