声明:本文内容及配图由作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人, 不代表平台立场。文章及其配图仅供工程师学习 之用,如有内容图片侵权或者其他问题的,请联 系我们及时删除。(联系我们,邮箱:app@ chrent.com )
[{"insert":"——转自公众号《老猫电磁馆》 作者 Pete Chen"},{"attributes":{"align":"right"},"insert":"\n"},{"insert":"随着5G发展,相控阵天线被广泛应用于高增益、高效率、多波束的天线系统。在相控阵天线通过移相器可以将辐射波束扫描到不同方向。为了提高相控阵系统的整体性能,尤其是在发射信道中,要求移相器具有低损耗、宽带、低功耗、体积小、功率处理能力强的特点。因此,分布式MEMS传输线(DMTL)移相器被认为是满足这些要求的潜在解决方案。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"\n"},{"attributes":{"bold":true},"insert":"摘要"},{"insert":"\n "},{"attributes":{"align":"justify","header":2},"insert":"\n"},{"insert":"\t在本研究中,我们开发了一个适用于相控阵天线系统的DMTL移相器。DMTL移相器设计为在2~4GHz时产生两态相移(0°和90°)。该移相器有15个MEMS并联开关,通过在开关状态下改变电容来控制移相。电容的这种变化将改变传输线的阻抗和传输速度,从而提供差分相移。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"\t利用HFSS对移相器进行电磁性能仿真,主要优化阻抗匹配、插入损耗和相移三个关键参数。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"\tMEMS器件仿真设计难点之一是网格尺寸的确定,仿真的精度取决于网格的大小。在本设计中,用于DMTL移相器的MEMS电桥的尺寸为372µm(长)×50µm(宽),如图1所示。当MEMS桥向传输线的中心导体向下拉时,其电容增大。因此,准确地模拟出移相器在上、下状态时的电容值,对于保证移相器产生准确的相移值是非常重要的。为了实现这一点,在模型的某些区域,特别是在桥梁区域,确保网格划分的精细度是获得准确仿真结果的关键。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"\t对于三维电磁求解器(仿真软件),网格划分是一个非常关键的过程,有时需要用户较深网格知识。利用HFSS中提供的自适应网格细化功能,网格大小不必手动确定,自适应网格划分工具将自动设置模型的网格大小,并逐渐细化网格大小,直到达到某个准则,从而保证仿真的精度和准度。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":" "},{"insert":{"image":"https://files.eteforum.com/article/202209/7b1ba1feb6f03976.png"}},{"attributes":{"align":"center"},"insert":"\n"},{"insert":"图1 MEMS电桥"},{"attributes":{"align":"center"},"insert":"\n"},{"insert":"\n"},{"attributes":{"bold":true},"insert":"HFSS仿真思路与流程"},{"insert":"\n\tMEMS-DMTL移相器是一种双端口器件,它通过直流偏压驱动安装在传输线上的MEMS桥来改变其相位。本研究使用共面波导(CPW)传输线,其中15个MEMS电桥按照特定距离排列,最终将移相器的三维模型导入HFSS。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"\t首先仿真一个MEMS桥组成的移相器单元,并与理论值进行比较。然后仿真总共15个单元以实现90º相移,如图3所示。在仿真设置中,将端口设置为波端口,计算移相器的端口阻抗。模型边界设为辐射边界,求解频率设为3ghz。最大通过次数增加到20次,以确保收敛。频率扫描设置为覆盖从0.5GHz到4GHz的相关频率范围。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"\t仿真完成后,后处理分析DMTL移相器的回波损耗、插入损耗和相移的结果。本案例采用ansys hfss 2020 R1进行仿真。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"\t "},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":" "},{"insert":{"image":"https://files.eteforum.com/article/202209/c5b982f537b452ce.png"}},{"attributes":{"align":"center"},"insert":"\n"},{"insert":"图2 DMTL移相器子单元"},{"attributes":{"align":"center"},"insert":"\n"},{"insert":" "},{"insert":{"image":"https://files.eteforum.com/article/202209/8f11f141f244af3f.png"}},{"attributes":{"align":"center"},"insert":"\n"},{"insert":"图3 完整移相器模型"},{"attributes":{"align":"center"},"insert":"\n"},{"insert":"\n"},{"attributes":{"bold":true},"insert":"仿真结果与效果分析"},{"insert":"\n MEMS移相器的主要分析参数是回波损耗、插入损耗和相移值。为了减少端口阻抗失配造成的损耗,在其工作频率上,"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"如图5所示,对于0º和90º相移,移相器在2.45GHz下的插入损耗为-0.8643 dB和-0.6756 dB。如图6所示,当所有MEMS电桥都处于下降状态时,相位增加90º。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":" "},{"insert":{"image":"https://files.eteforum.com/article/202209/f2d92f50c51422b8.png"}},{"attributes":{"align":"center"},"insert":"\n"},{"insert":"图4 回波损耗"},{"attributes":{"align":"center"},"insert":"\n"},{"insert":{"image":"https://files.eteforum.com/article/202209/55e81439dca5217e.png"}},{"insert":" "},{"attributes":{"align":"center"},"insert":"\n"},{"insert":"图5 移相0°和90°插损"},{"attributes":{"align":"center"},"insert":"\n"},{"insert":" "},{"insert":{"image":"https://files.eteforum.com/article/202209/f07ad215e8cc6e3a.png"}},{"attributes":{"align":"center"},"insert":"\n"},{"insert":"图6 0°和90°移相"},{"attributes":{"align":"center"},"insert":"\n"},{"insert":"\n04PART投入资源与时间\n PC配置:16 核心,使用HPC加速;"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"\t内存:64GHz;"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"\t网格数:427907;"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"\t仿真耗时:56 min 5s;"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"\n05PART结论\n\t本研究中,利用Ansys-HFSS对DMTL移相器进行了设计与仿真。将移相器的三维CAD模型导入HFSS中,对器件的电磁性能进行评估。仿真采用HFSS强大的自适应网格技术和高性能加速(HPC),保证了计算结果准确性和仿真效率。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"\tDMTL移相器在2.45GHz时最大相移92.42°,进一步扩展研究:改变单元数目及单元的排列方式提供更丰富的相移值。利用HFSS中提供的HPC和自适应网格细化技术,可以加快仿真过程并给出准确的结果。"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"MEMS:Micro-Electro-Mechanical System 微机电系统"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"DMTL:Distributed MEMS Transmission Line 分布式MEMS传输线"},{"attributes":{"align":"justify"},"insert":"\n"},{"insert":"\n"}]
-
发表于 2022-09-01 16:46
- 阅读 ( 1887 )